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A new approach to the theory of grain 
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It is shown that the classical picture of a grain boundary in terms of a single array of 
lattice dislocations is incomplete. In addition, it is also necessary to incorporate into the 
boundary a second array of continuously distributed surface dislocations of infinitesimal 
strength and of opposite sign to those of the lattice dislocations, but with the same total 
magnitude. Furthermore, the lattice dislocations can also dissociate into a continuous 
distribution by the formation of cores. As the angular misorientation of the grain 
boundary increases, more and more of the surface dislocations combine with the lattice 
dislocations, in turn resulting in the formation of a larger and larger stress-free ledge, 
with a consequent overall reduction in the strength of the remaining lattice dislocation. 

1. Introduction 
In 1953 the first dramatic proof was given for the 
existence of crystal lattice dislocations when 
Vogel, Pfann, Corey and Thomas [1] showed that 
the misorientation angle 0 associated with a low- 
angle symmetric tilt boundary in germanium, as 
measured by X-rays, correlated with the spacing 
between etch pits h in the boundary according to 
the theoretically predicted relation 

b L = hO (1) 

where b5 is the Burger's vector of the crystal 
lattice dislocation. This initial finding led to a 
burst of activity in the study of grain boundaries, 
the results of which have been extensively-described 
in a number of places [ 2 4 ] .  Surprisingly, how- 
ever, when the simple concept embodied in 
Equation 1 was applied to grain boundaries of 
arbitrarily large angular misorientation, the results 
were not so straightforward. It was argued that the 
difficulty might perhaps be due to the small value 
of h in Equation 1 for large angles which caused 
the dislocation cores to overlap. This argument, 
however, implied that the basic theory was still 
sound and that it was simply a technical problem 
to somehow account for the properties, i.e. 
distortions, energy, etc. of a more or less con- 
ventional dislocation core. So much attention was 

placed on this one aspect of the problem that 
the question of whether or not the basic theory 
of grain boundaries itself might in fact contain 
some basic conceptual errors was left unanswered. 
It is instructive to consider in some detail how 
these errors could be allowed to creep into one 
of the cornerstones of dislocation theory and 
become sufficiently entrenched within it so as 
to retard progress in the understanding of surfaces 
and interfaces in general, wherein grain boundaries 
play only a part. In what follows, it will be shown 
that a number of very important fundamental 
concepts associated with dislocation theory are 
embodied in the low-angle grain boundary relation- 
ship given by Equation 1. They are the concepts 
of (a) an image dislocation, (b) a dislocation core, 
(c) quantization of a dislocation and (d) a wall of 
dislocations. These Will now be considered in 
some detail. 

2. The individual crystal lattice dislocation 
Consider the single edge dislocation in Fig. la 
contained within a finite solid. It is represented 
by the terminus of an extra half plane which is 
squeezed to a point. This dislocation gives rise to 
stresses on the surface of the finite body. These 
stresses can be removed by the introduction of 
image dislocations as first proposed by Head [4] 
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(a) (b) 
Figure I (a) Undissociated (b) dissociated edge dislocation, along with its corresponding surface dislocations. 

�9 �9 2 k  �9 

�9 . � 9  ~ 1 4 9 1 7 6  ~ 1 4 9  ~ 1 7 6 1 7 6  o � 9 1 4 9  

�9 3 . 3  
�9 , o  ~ �9 � 9 1 7 6  �9 �9 � 9 1 7 6 1 7 6  

�9 I 

~ 2 

�9 I 

_L 

8 2 8  

�9 I 

�9 3 - 3  
~ �9 o � 9  � 9 1 7 6  � 9 1 7 6  � 9 1 4 9  

�9 ~ L ~ 

�9 o � 9  � 9 1 7 6  �9 �9 . ~ 1 4 9  . � 9  

�9 2 

� 9  

Figure 2 Image dislocation 
model  used to insure that  the 
stresses vanish on the surface of 
a finite body containing a dis- 
location. 



in 1953. In the present case, this would involve 
the introduction of an infinite array of such 
dislocations, a portion of which are shown dotted 
in Fig. 2. The dislocations labelled with 1 are 
primary images. Those labelled with 2 are secondary 
images which are in fact images of the primary 
images from parallel faces. The images labelled 
with 3 are images of the primary images but arising 
from a surface at right angles to that which pro- 
duced the primary image and so forth. Clearly, this 
is an extremely cumbersome approach, both from a 
mathematical as well as from a physical perspec- 
tive, and can lead to great confusion. In fact, this 
image dislocation approach actually hinders a clear 
understanding of the grain boundary problem, as 
will be shortly demonstrated. 

The most straightforward method of removing 
the surface tractions associated with the dislo- 
cation in Fig. la is to introduce a continuous 
distribution of infinitesimal dislocations on the 
surface of the body, the so called surface dislo- 
cation [5, 6] in the manner shown. The surface 
dislocations obey the following simple but power- 
ful conservation law: 

bL + Y~bs = 0 (2) 

where bL is the Burger's vector of the lattice dis- 
location, while b s is that of the surface dislocation. 
For clarity b s is chosen as - -bL/4  in Fig. la, so 
that there are only four surface dislocations, all 
of opposite sign to that of the lattice dislocation. 
The distribution of the surface dislocations can be 
readily determined using well known numerical 
or integral equation techniques [7, 8]. Also 
important to note is that the distribution of sur- 
face dislocations is directly related to the shape 
or distortion of the external surface of the body, 
a point not at all obvious from the image dislocation 
model. This particular consideration is of para- 
mount significance in the correct understanding 
of the grain boundary problem. 

Since the extra half plane associated with the 
edge dislocation of Fig. la is shown with its ter- 
minus squeezed to a point, a singularity is generated 
at this point. It is the usual custom to imagine a hole 
to be drilled along the dislocation line in order 
to remove the singularity [9]. If this is done 
however, the physics of the problem becomes 
incorrect since it is not possible for this hole to 
glide along with the dislocation. A more realistic 
model would be to assume the formation of an 
asymmetric tensile crack just below the extra 

half plane such as depicted by the shaded area of 
Fig. lb which may also be viewed as the dislo- 
cation core. In this figure the lattice dislocation, 
which was initially concentrated at a single point, 
is now allowed to dissociate into a continuous 
distribution of surface or crack dislocations [5]. 
Equilibrium is attained when the strain energy 
release occasioned by the dissociation is just 
balanced by the increase in surface energy due to 
crack formation. Needless to say, there are diffi- 
culties associated with a precise evaluation of the 
surface energy because of the small interplanar 
spacings, nevertheless the qualitative picture of  the 
dissociation process remains correct. The surface 
dislocation arrays in Figs. la and b remain virtually 
unaltered by the core dissociation. Another 
important feature of Fig. lb is that the dislocation 
core, unlike a simple hole, is highly structured in 
the form of an asymmetric tensile crack. Finally, 
Fig. lb may be viewed as a doubly-connected body, 
all of whose surfaces are covered with a continuous 
distribution of surface dislocations arranged such 
that the surface tractions are reduced to zero. 

3. Dislocation arrays which comprise grain 
boundaries 

Consider next the stepped surface of Fig. 3a. Each 
step or ledge may be viewed as arising from the 
following reaction toward the right: 

bL + Nbs ~ L  (3) 

where L denotes the strength of the ledge. This 
reaction may also be viewed as the process wherein 
the surface dislocations completely annihilate with 
the crystal lattice dislocations with the resultant 
removal of their stress and strain fields. This is 
indicated by the dislocation pairs of opposite 
sign at each ledge in Fig. 3a. 

Suppose now that the stepped surface in 
Fig. 3a is flattened into a planar configuration 
such as depicted in Fig. 3b, where the original 
undeformed positions of  the body are shown 
as dashed lines. Such a process is formally equiv- 
alent to uncoupling the surface dislocations 
from the ledge and uniformly distributing them 
over the surfaces between the ledges [6]. In terms 
of Equation 3, this means the reaction toward 
the left. The lattice dislocations are similar to that 
shown in Fig. 1 a in that they terminate at a point 
and thus possess no cores. An important difference 
however is that unlike the case in Fig. l a, the 
inclined surface in Fig. 3b is not stress free. On 
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Figure 4 Creation of a symmetric tilt boundary by the 
joining of the body shown in Fig. 3b to its mirror image. 

the other hand, the stresses that are present are 
only on the order of the spacing between lattice 
dislocations as will be shown shortly. This becomes 
clear when it is realized that the surface and lattice 
dislocations can be viewed as dipoles distributed 
along the surface of the crystal. Also important 
to realize in Fig. 3b is that the concept of an 
image dislocation breaks down completely, whereas 
no such problem is encountered with the surface 
dislocation concept. 

If the body depicted in Fig. 3b is now joined 
to its mirror image, the symmetric tilt boundary 
of misorientation angle 0 = 18.9 shown in Fig. 4 
obtains. For the purposes of  clarity, the surface 
dislocations have been omitted from this figure. 
On the other hand, the dislocation configuration 
associated with this particular grain boundary can 
be portrayed somewhat more schematically as 
depicted in Fig. 5a. The large dislocation symbol 
represents that due to the lattice dislocation, 

while the small symbols denote the surface dislo- 
cations. It was originally thought [5, 10, 11] that 
the surface dislocations, in analogy with Fig. la, 
served as a screening array, as depicted in Fig. 5b. 
This model, however, was dropped in favour of 
that shown in Fig. 5a since the dislocations in the 
screening array were not confined to any well- 
defined surface and is thus a violation of one of 
the fundamental tenets of  surface dislocation 
theory. The screening array did however obey 
the powerful conservation relation given by 
Equation 2. On the other hand, the classic descrip- 
tion of a grain boundary does not even admit the 
existence of surface dislocations, but instead 
represents it in terms of an array of lattice dis- 
locations as shown in Fig. 5c. 

At first glance, it is rather astonishing that the 
surface dislocations within the grain boundary 
could have been completely overlooked. How 
could such a glaring omission have come about? 
The most likely explanation is as follows. First 
consider the shear stress field axy at some point 
x, y arising from an infinite wall of edge dislo- 
cations spaced at a distance h from one another 
which can be written as [9] 

ubL +oov x[ x2 - ( Y  --nh) 2 ] 
Ix2 +~y---~-~ 

(4) 

and can be evaluated to give/ 2wx~[  21ry\ 
2 I c o s h - - I l c o s - - / -  1 

~b~ ~ x \ h /~ h / 

Oxy - 2~'(1 -- v) h 2 2(sinh2 n x  + sin2 ny ]2 

\ h h r  
)(5) 

where it can be shown that the stresses practically 
vanished at distances from the grain boundary of 
the order of h. Because of this absence of long 
range stress, there seemed to be no reason to look 
for surface dislocations or their image dislocation 
analogue, if indeed one exists. Even more insidious 
is the fact that the surface dislocation array is 
continuous and uniform, and in the case of an 
infinite array, there is no stress field produced. 
This can be seen by rewriting the finite sum of 
Equation 4 in terms of a continuous distribution 
as follows [31: 

(•bL/h) f+L x[xa _ ( y _ y , ) 2 ]  
- - L  d y '  

(6) 
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Figure 5 Grain boundary of Fig. 4 described in terms of (a) lattice and surface dislocations; (b) lattice and a screening 
dislocation array; (c) lattice dislocations only; (d) periodic unit removed from array in Fig. 5a; (e) and (f) correspond 
to dislocation arrays derived from the configurations shown in Figs. 6a and b, respectively. 
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where 2L is the length of the array. The integral 
can be evaluated to yield 

 bL/h) 2Lx(x 2 + L 2) 
~ - 2rr(1--v) [x 2 + ( v + L )  2] [x 2 + ( y - L )  21 

(7) 
where it is clear that as L goes to 0% Ox~,-+ O. 

Another advantage of the surface dislocation 
array shown in Fig. 5a is that it allows one to 
consider only a unit of this boundary of length 
h such as shown in Fig. 5d for the purposes of 
various energy calculations, since the stress fields 
of all the other dislocations lying outside this 
distance are screened off from the unit under 
consideration. The screening array of Fig. 5b 
possesses this same advantage and has been utilized 
accordingly [11, 12]. On the other hand, the 
conventional model of a grain boundary depicted 
in Fig. 5c cannot be treated in this way since the 
short range stress field about such a boundary 
depends upon the interaction of any given dis- 
location with all of the others in the infinite array 
in the manner prescribed by Equation 4. 

Since the classical description of a grain bound- 
ary such as given by Fig. 5c is incorrect, it seems 
only natural to inquire as to whether any physical 
meaning is to be attached to a single wall of dis- 
locations of one sign. The answer to this question 
is best solved by reference to the drawing illustrated 
in Fig. 6a. Here the rightmost face of the body, 
whose initially undeformed position is drawn 
dashed has been elastically deformed into a flat 
inclined surface. Such a deformation is equivalent 
to uniform distribution of surface dislocations of 
one sign on the deformed surface. On the other 
hand, the creation of this array must also at the 
same time give rise to a single super dislocation 
of opposite sign at the bottom surface of the 
body in accordance with the conservation law of 
Equation 2. If the body in Fig. 6a is joined to its 
mirror image, the dislocation configuration of Fig. 
5e obtains. It is to be emphasized that the con- 
figuration of Fig. 5e is not a grain boundary per  

se but is the limiting case of the grain boundary 
depicted in Fig. 5a as h ~ oo. Under these con- 
ditions, the super dislocation in Fig. 5e becomes 
infinite in strength. 

There is yet another limiting case of the grain 
boundary shown in Fig. 5a. This occurs when the 
steps in Fig. 3a are made infinitesimal in length 
and distributed uniformly over the surface of the 
body in a manner such as approximated by Fig. 
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6b. If the surface is next flattened, similar to 
that illustrated in Fig. 3b, and joined to its mirror 
image, the configuration depicted in Fig. 7 is 
obtained, while the corresponding dislocation 
morphology is given in Fig. 5f. Here we see a 
uniform and continuous array of dipoles which 
represents the limiting case where h - + 0  and 
bL ~ 0. This limit also corresponds physically 
to a pair of smooth inclined surfaces associated 
with each grain that can be joined together to 
form a perfectly matched, i.e, no gaps or voids, 
stress-free grain boundary. On the other hand, 
such an arrangement cannot be realized in actual 
crystals because the ledge lengths are quantized 
by the crystal structure of the lattice which is in 
turn determined by the size of the atoms. Thus, 
the ledges cannot be subdivided infinitely, but 
are restricted in magnitude by the interatomic 
spacing of the crystal lattice so that all grain 
boundaries must be more or less of the type 
represented in Fig. 5a. 

4. The unique behaviour of grain boundary 
dislocation cores 

It follows that the grain boundary dislocation con- 
figuration of Fig. 4, in analogy with the single 
lattice dislocation of Fig. lb, possesses a high 
elastic strain energy which can be lowered by the 
formation of asymmetric cracks or cores at the 
terminus of the extra half planes, similar to that 
illustrated in Fig. lb. The resulting grain boundary 
configuration is depicted in Fig. 8 where the dis- 
location cores are again denoted by shaded areas. 
A new and important factor, which was not present 
for the isolated dislocation core of Fig. lb now 
enters the picture for the grain boundary dislo- 
cation cores. This is the fact that the formation 
of the grain boundary cores involves the annihil- 
ation of a portion of the lattice dislocation, which 
is now distributed about the core, with an equal 
number of dislocations which were originally 
located within the area of the core before it was 
formed. For example, if the core length along 
the grain boundary is given by Lc then the strength 
of the lattice dislocation at the boundary is reduced 
by an amount given by ( L J h ) b L  where, as usual, 
h is the separation between the lattice dislocations 
in the boundary. The accompanying reduction in 
strength or compensation of the lattice dis!ocation 
by the surface dislocations takes place in accord- 
ance with Equation 3 to the right where an 
accompanying increment in ledge length AL is the 
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Figure 7 Stress-free grain boundary obtained when the 
lattice and surface dislocations are uniformly and con- 
tinuously distributed within the boundary. 

result. The strength of the resulting uncompensated 
grain boundary dislocation b6B; i.e. that which 
generates a stress field, is thus simply 

or 

Z e 
bGB ~ -  bL -- -v-bL (8) 

f /  

h - - Z  e 
bc~ - h bL (9) 

It is clear that the reason why lattice and surface 
dislocations within the grain boundary can interact 
with one another in the way that leads to 
Equations 8 and 9 is due to the fact that they 
occupy the same surface. This is not possible for 
the isolated lattice dislocation of Fig. lb which is 
separated from its corresponding surface dislo- 
cations by means of a doubly-connected surface. 

In the limiting case where the core length L e 
in Fig. 8 becomes equal to the separation h of the 
lattice dislocations in the boundary, b6B = 0 
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Figure 8 Grain boundary structure obtained when the 
dislocation configuration in Fig. 4 is allowed to dissociate 
by means of core formation. 

according to Equation 9, This simply means that 
all of the surface dislocations annihilate with the 
lattice dislocation to form stress-free edges in 
accordance with Equation 3. This may also be 
referred to as a completely torn or uncoalesced 
grain boundary [5]. The configuration shown in 
Fig. 9 can never be realized physically because it 
corresponds to a state of high surface energy [6, 
10, 13]. However, as the angle of misorientation 
0 increases, h decreases in accordance with the 
following relationship: 

0 
bL = hsin -- (10) 

2 

The lattice dislocation at the boundary thus loses 
more and more of its strength. This can be seen 
by referring to the 36.9 ~ tilt boundary of Fig. 10a 
where the dislocation cores occupy half the area 
of the grain boundary. It also follows that for large 
angle boundaries, the dislocations comprising the 



Figure 9 Limiting case of Fig. 8 where the grain boundary 
dislocation core length becomes equal to the dislocation 
separation. 

boundary cannot be treated as a linear array, as 
in Fig. 5a. Instead, the lattice dislocation must 
now be distributed over the surface of the lattice 
dislocation core. In the limiting case when the 
angular misorientation between the two adjacent 
grains becomes equal to 90 ~ L e = h ,  and we 
simply have the case of a perfect crystal; i.e. 
no grain boundary, as can be seen by reference to 
Fig. lOb. The fact that the strength of a grain 
boundary dislocation is reduced below that which 
it would ordinarily possess if it were situated by 
itself within an otherwise perfect crystal was first 
recognized by Jagannadham and Marcinkowski 
[12]. It should also be pointed out here that 
Equation 10 is the more exact version of Equation 
1. In the former relation, each grain is treated 
separately, wherein the grain boundary dislo- 
cation bL is associated with a particular grain. 
However, in Equation 1, the dislocations are 
assumed to be situated in one single crystal, 
which strictly speaking, is not possible. While 
it can be argued that for small values of 0 the 
differences between Equations 1 and 10 are 
insignificant, it must not be forgotten that it 
was just this small angle approximation that 
for more than thirty years hampered a full under- 
standing of the nature of grain boundaries in 
terms of surface dislocations. 

Since the grain boundary dislocations from 

\ 

\ 

(a) 

Figure 10 Symmetric tilt boundary with misorientation angle (a) 36.9~ (b) 90 ~ 

( b )  
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in the strength of the lattice dislocations in 
accordance with Equations 8 and 9. Of further 
interest is the fact that the dislocation cores 
associated with the grain boundary dislocations of 
Fig. 11 are highly asymmetric as compared to the 
paired grain boundary dislocations of Figs. 8 and 
10a or to the non-boundary dislocation of Fig. 
lb. 

Figure 11 Reduction in energy of the grain boundary 
shown in Fig. 8 by dislocation climb. 

each of the grains in Fig. 8 are in contact with 
each other at the boundary, the elastic energies 
are relatively high. A reduction in this energy 
can be attained by having them separate from 
one another via some mechanism such as dis- 
location climb into the configuration illustrated 
in Fig. 11, where again, for the purposes of clarity, 
the surface dislocation array has been omitted. 
Such a dissociation allows a reduction in the size 
of the dislocation cores and thus the elastic 
strain energy. Fig. 11 clearly depicts the correct 
model of a grain boundary for small values of 
0, and is in fact the model upon which Equation 
1 was predicated. Again, however, it must be 
emphasized that even for very low angle boundaries 
with configurations such as that given in Fig. 11, 
the surface dislocations are~.still present within 
the boundary. Furthermore, these surface dis- 
locations lead to a finite albeit very small reduction 

5. Summary and conclusions 
In the case of an individual crystal lattice dis- 
location within an otherwise perfect crystal of 
finite dimensions, the stress-free boundary con- 
ditions on the outer surface of the body can be 
satisfied by the distribution of a continuous array 
of infinitesimal dislocations of opposite sign 
to that of the lattice dislocation on the surface. 
The total Burger's vector of all the surface dis- 
locations must be of the same magnitude as that 
of the lattice dislocation. In addition, the lattice 
dislocation can lower its energy by the creation 
of an asymmetric crack or core upon whose 
surface the Burger's vector of the lattice dislo- 
cation is continuously distributed. Thus, in its 
most general sense, a lattice dislocation in a finite 
body may be viewed as a doubly-connected sur- 
face upon which are distributed a continuous 
distribution of dislocations of opposite sign which 
can never come into contact with one another. 

When the crystal lattice dislocations align 
themselves into a wall so as to form a grain 
boundary, then the boundary may be viewed as 
a surface upon which both the lattice and surface 
dislocations co-exist. In this special case the dis- 
location loses its doubly-connected surface and 
reverts to one of single connectivity. The classical 
view is to regard the grain boundary as an array of 
lattice dislocations only, wherein the surface dis- 
locations are omitted. This leads to difficulties in 
trying to understand the structure of high angle 
boundaries, especially the reduced elastic strength 
of the dislocations comprising such boundaries. 
However, this difficulty is resolved with the sur- 
face dislocation approach in that, as the angle of 
misfit between the two grains comprising the 
grain boundary increases, more and more of the 
surface dislocations combine with the lattice 
dislocation to reduce its strength, while at the 
same time generating a stress-free ledge. 
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